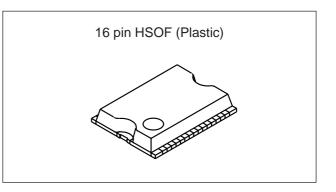
SONY


CXG1047FN

Dual-Band 3V Power Amplifier for GSM900/1800 Applications

Description

The CXG1047FN dual band GaAs PA is a 3-stage power amplifier that may be used for both GSM900 and DCS1800 applications. To achieve minimum die-size and package dimensions, it contains one amplifier chain with a single input and output.

The PA has a single RF input for both the GSM900 and DCS1800 transmit signals. The amplifier can be configured for 2 separate inputs. Power control is best achieved by variation of VDD1/VDD2 and VDD3 drain voltages with an external transistor. A proposed power control circuit configuration is included. External PMOS drain switch should be used to achieve low leakage.

Features

- · Single positive rail only
- Typical output power of 35.5dBm at 900MHz and 33dBm at 1800MHz
- Typical efficiency of 37% at 900MHz and 37% at 1800MHz
- Small package size with integral heat-sink: 16-pin HSOF ($5.6 \times 4.4 \times 0.9$ mm)
- 3-stage amplifier chain for low cost
- Simple pin diode circuitry is used to switch between 1800 and 900MHz matching circuits
- Off mode insertion loss typically 27dB at 900MHz (Pin = +6dBm at VDD = 0V)
- Typical transmit noise @20MHz offset -79dBm/100kHz

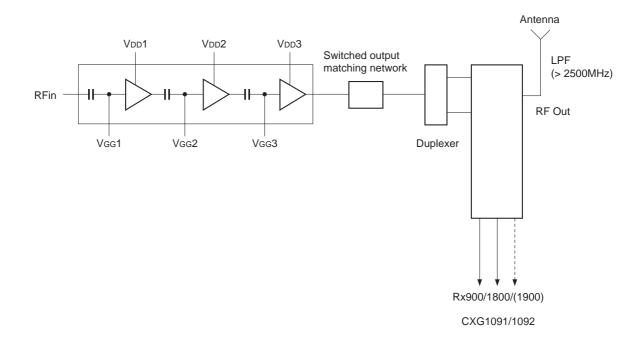
Applications

Dual-band handsets transmitting on the GSM900 or DCS1800 frequencies

Structure

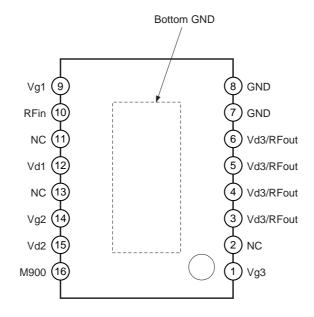
GaAs J-FET MMIC

Absolute Maximum Ratings (Ta = 25°C)


Drain voltage	VDD1, VDD2, VDD3	8	V
0		-	v
 Gate voltage 	Vgg1, Vgg2, Vgg3	–5 to +1	V
 Input power 	Pin, max.	12	dBm
 Channel temperature 	Tch, max.	150	°C
 Operating temperature 	Та	-30 to +90	°C
 Storage temperature 	Tstg	-40 to +150	°C

Note on Handling

GaAs MMICs are ESD sensitive devices. Special handling precautions are required. The IC will be damaged in the range from 60 to 100V@200pF, 0Ω . The actual ESD test data will be submitted later.


Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

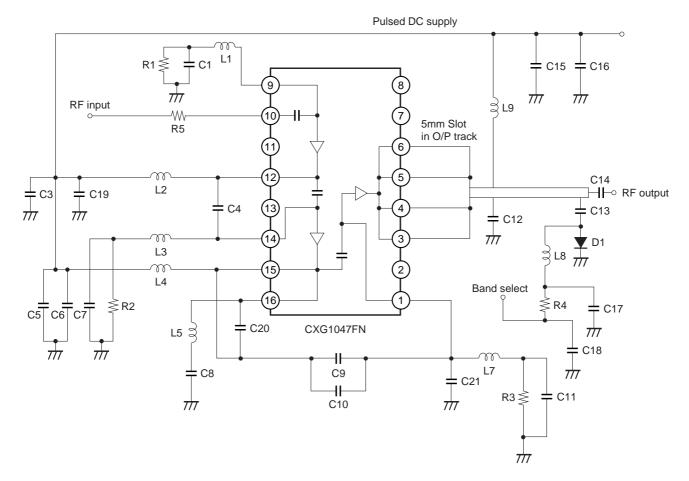
Dual Band GSM900/18800 PA Configuration

Pin Configuration

Power Amplifier Performance

Measurement Conditions: Ta = 25° C, Pin = +6dBm at 900MHz and Pin = +9dBm at 1750MHz, pulsed DC conditions: 12.5% duty cycle 577µs burst duration.

All items are specified with the recommended schematic shown on page 6.


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Frequency						
Frequency range (1)	GSM900		880		915	MHz
Frequency range (2)	DCS1800		1710		1785	MHz
Output Power						
(1) Output power – 900MHz	Ρουτ	Vdd = 3.5V	34.5	35.5		dBm
(2) Output power – 1750MHz	Ρουτ	Vdd = 3.5V	31.5	33		dBm
	Ρουτ	$V_{DD} = 4V, Pin = +7dBm$	31.5	33		dBm
Power Control						
Power control range GSM900	Pctl	*1	38			dB
Power control range DCS1800	Рст∟	*1	35			dB
Off insertion loss – 900MHz	Ins loss	V _{DD} = 0V Pin = +7dBm	25			dB
Off insertion loss – 1750MHz	Ins loss	V _{DD} = 0V Pin = +7dBm	35			dB
Efficiency	·		·			
Efficiency at 900MHz	PAE	V _{DD} = 3.5V Pin = +6dBm	32	37		%
Efficiency at 1750MHz	PAE	V _{DD} = 3.5V Pin = +9dBm	32	37		%
VSWR						
Input VSWR at GSM900/DCS1800				2:1	3:1	
Harmonics Tx = 900MHz						
2nd harmonics		After matching cct Po = 35dBm@3.5V		-30	-25	dBc
3rd harmonics		After matching cct Po = 35dBm@3.5V		-35	-28	dBc
4th harmonics		After matching cct Po = 35dBm@3.5V		-40	-33	dBc

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Harmonics Tx = 1750MH	Harmonics Tx = 1750MHz					
2nd harmonics		Measured after matching cct Po = 32dBm@3.5V		-25	-20	dBc
3rd harmonics	onics After matching cct Po = 32dBm@3.5V -30 -25 dBc		dBc			
4th harmonics		After matching cct Po = 32dBm@3.5V		-40	-35	dBc
Stability						
Measured with 10:1 load impedance all angles		Over voltage range 3 to 5V and 0dBm to +10dBm input power	No oscillation present above –60dBm			
Load VSWR mismatch at 900MHz and 1800MHz		*2	10:1 Pin = +7dBm VDD = 3 to 5V		VSWR	
Transmit Noise						
GSM900 935MHz to 960MHz		Pout = 35dBm		-79		dBm/ 100kHz
DCS1800 1805MHz to 1880MHz		Pout = 32dBm		-79		dBm/ 100kHz

 *1 Power control is achived by varying VDD1/VDD2 and VDD3.

*2 When the output matching network is subjected to a 10:1 VSWR at all angles the amplifier shall suffer no permanent damage.

Dual Band Power Amplifier Schematic

Dual Band Power Amplifier Component Values

C1

C3

R1	12Ω
R2	12Ω
R3	160Ω
R4	36Ω
R5	8.2Ω

C4	8.2pF	L3
C5	47pF	L4
C6	1nF	L5
C7	47pF	L7
C8	1.5pF	L8
C9	3.3pF	L9
C10	5.6pF	
C11	47pF	D1
C12	2.7/2.7/1.6pF	
C13	8.2/1.2pF	
C14	47pF	
C15	22pF	
C16	1nF	
C17	47pF	
C18	1nF	
C19	1nF	
C20	2.7pF	
C21	8pF	

47pF

47pF

MA4P275-1146 Ma/Com

8-turn coilcraft spring type

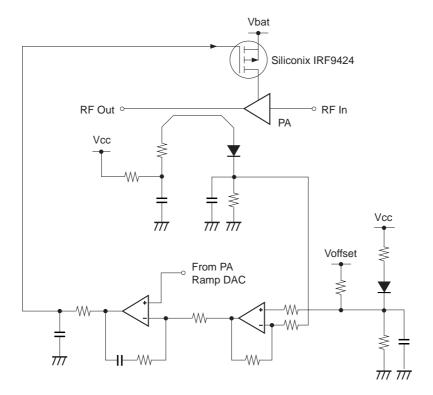
68nH

8.2nH

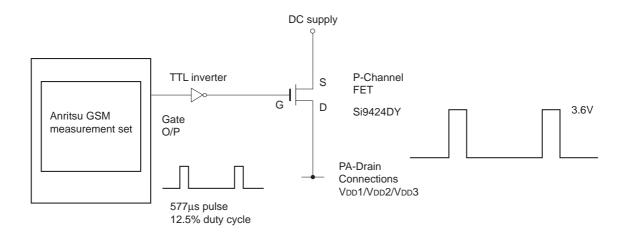
22nH

3.3nH

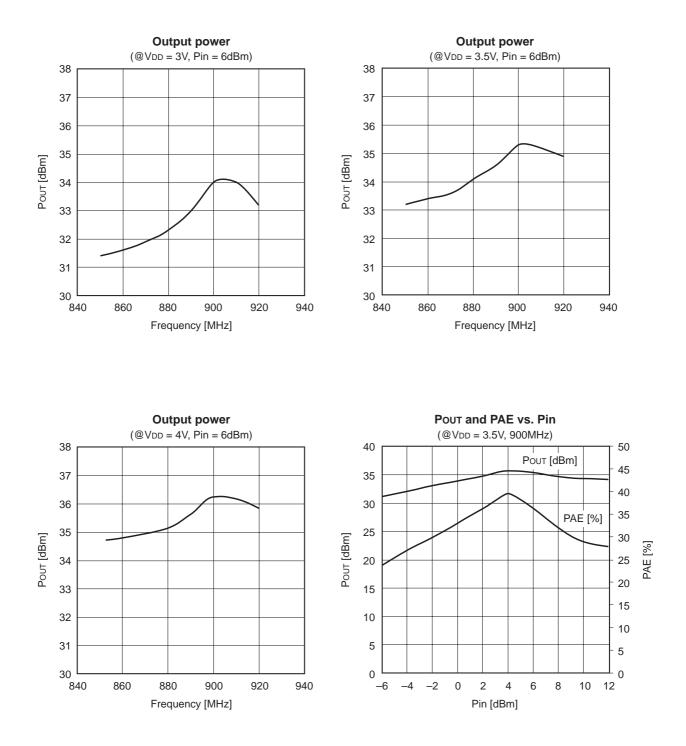
2.7nH

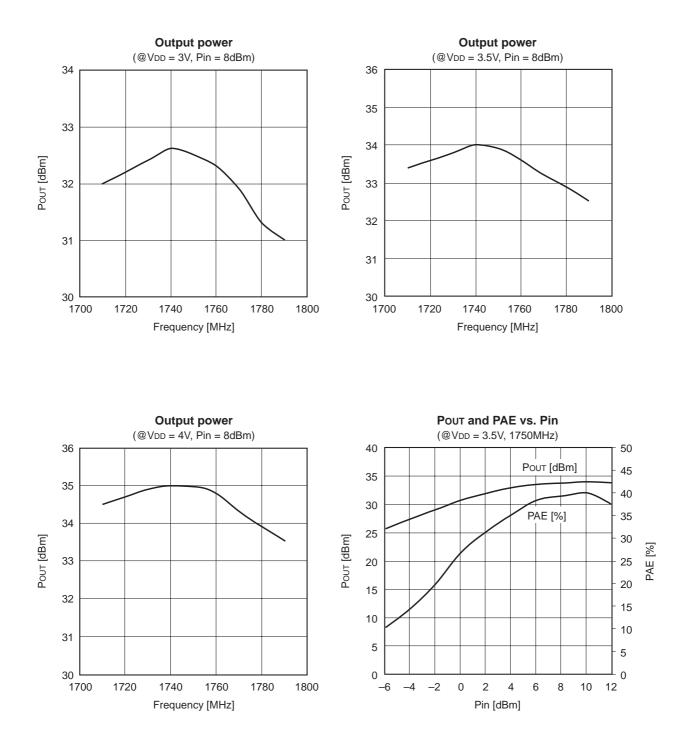

68nH

68nH

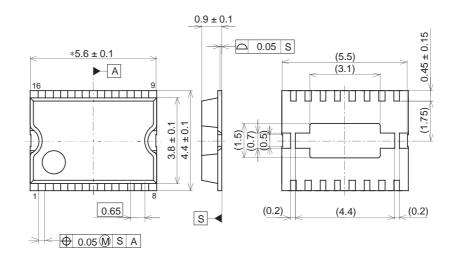

L1

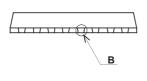
L2

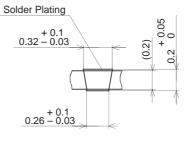

Recommended ALC Schematic



Measurement Circuit – Pulsed DC Supply


Example of Representative Characteristics





Package Outline Unit: mm

HSOF 16PIN(PLASTIC)

DETAILB

NOTE: Dimension "*" does not include mold protrusion.

SONY CODE	HSOF-16P-02
EIAJ CODE	
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.06g